平成30年版 建築設備設計基準の正誤表について 設備設計基準 第4版正誤表

設備設計基準 第4版止誤表							
頁	編	章	節・項		訂正箇所	誤	正
47	2	1	5–1	コンセント	(5)	専用とする回路は、原則として <mark>第2</mark> <mark>章 第6節 6-4-2「分岐回路」によ</mark> る。	専用とする回路は、原則として第6 節 6-4-2「分岐回路」による。
372	4	1	2-3-5	暖房負荷計算 外気負荷	下から9行目	ρ : 空気の密度[<u>kJ</u> /m³]	ρ : 空気の密度[<u>kg</u> /m³]
381	4	1	3-3	選定図表	表3-5 チリングユニット(水冷式)の諸元 左欄の圧縮機横	電動機出力[kVA]	電動機「kVA]
429	4	1	9-1-2	ダブルコイル空気調 和機機の算定及び 空気線図の作図法	(h)コイル冷却負荷の算定	ii)潜熱(外気負荷用)コイル冷却負荷 (q _{oo})は、比エンタルピー差(h _{2c} - <u>1.4c</u>)に基 づいて計算する。	ii)潜熱(外気負荷用)コイル冷却負荷 (q_o)は、比エンタルピー差(h₂,-h₄)に基 づいて計算する。
594	4	5	3	ダクト系の抵抗計算	(3)直管ダクトの圧力損失 ΔP _t [Pa]の3行目の式	$Q = \pi / 4 \cdot d^2 \cdot \underline{\nu} \cdot 3,600$	$Q = \pi / 4 \cdot d^2 \cdot \underline{\mathbf{v}} \cdot 3,600$
912	7	6	1-3	計算	図1-7 シーリングディ フューザーC ₂ 型の発生騒音	(a)図、(b)図及び©図のX軸で、 <u>風量の</u> 100の位置がずれている。	(a)図、(b)図及び©図のX軸で、 <u>風量の</u> 100の位置を2目盛り右に移動する。
913	7	6	1-3	計算	図1-8 シーリングディ フューザーE ₂ 型の発生騒音	(a)図、(b)図及び©図のX軸で、風量の 100の位置がずれている。	(a)図、(b)図及び©図のX軸で、風量の 100の位置を2目盛り右に移動する。
914	7	6	1-3	計算	図1-9 吹出口 VHSの発生 騒音	(c)図の寸法 300× <u>150</u>	(c)図の寸法 300× <u>200</u>